

Phénomènes pré-disruptifs dans les liquides

Olivier LESAINT

Laboratoire de Génie Electrique de Grenoble (G2E lab) CNRS / Grenoble INP / Université Grenoble Alpes

- ✓ Laboratoire de Génie Electrique de Grenoble (Section 08 CNRS)
- Equipe « Matériaux Diélectriques et Electrostatique »
 - → matériaux pour le génie électrique

Activités en lien avec les plasmas

- Décharges dans les liquides (N. Bonifaci, O. Lesaint, A. Denat)
 - Isolation THT: propriétés fonctionnelles des liquides
 - Phénomènes pré-disruptifs
 - Caractérisation « large spectre »
 - processus de base (liquides cryogéniques)
 - Procédés (décharges dans l'eau) : dépollution, extraction (matière végétales)
- Décharges dans les gaz (N. Bonifaci, O. Lesaint, R. Hanna)
 - SF6, HFO: Isolation THT, propriétés fonctionnelles
 - micro-gaps (< 1 μ m): composants de protection intégrés

Phénomènes pré-disruptifs dans les liquides

✓ Des différences marquées avec les gaz...

* densité élevée \Rightarrow champs locaux très élevés (initiation, tête décharge) ≈ 10 MV/cm

- → avalanches électroniques en phase liquide ≈ 7 MV/cm (cyclohexane), taille $\approx \mu m$
- d'autres mécanismes possibles ?
 - ionisation de champ ? (Halpern & Gomer: hydrocarbures ≈ 15 MV/cm)
 - dissociation renforcée par le champ ? (Onsager)

* liquides « standards » (hydrocarbures, eau):

 \Rightarrow pas de porteurs de charge rapides en phase liquide

durée de vie électrons $\approx 10 \text{ ps}$, $\rightarrow \text{ ions (E < 2 MV/cm)}$

Phénomènes pré-disruptifs dans les liquides

✓ Des différences marquées avec les gaz...

* pas de propagation possible sans changement de phase liquide \rightarrow gaz

 \Rightarrow Phase gazeuse transitoire, hors d'équilibre, conditions extrêmes ...

* des paramètres supplémentaires

- Permittivité ε (80 dans l'eau)
- Conductivité (temps de relaxation dans l'eau 1mS/cm : 7 ns)
- large variété de liquides, rôle important d'additifs
- * pas de modèles prédictifs (très partiels)

- I Phénoménologie phénomènes prédisruptifs
 - caractères génériques: « modes » de propagation
 - cas de l'eau
 - Nature du liquide et additifs
- II Nature gazeuse des canaux, influence de la pression
 - Caractérisation expérimentale, corrélation pression-vitesse
 - Représentation schématique, hypothèses, questions ...
- III Propriétés électriques « macroscopiques » des canaux
 - Courant, paramètres
 - Cas de l'eau
- IV Génération des streamers
 - Hydrocarbure non-polaire: cyclohexane
 - eau

I - une large variété de phénomènes ...

0.1km/s « 1er mode »

2 km/s

- Terme générique "streamer" → très innapproprié !! \checkmark
- "Modes": typologie descriptive (vitesse, ...) \checkmark

I – "modes" : exemple cyclohexane

✓ Clairement observable uniquement sous front raide (t _{montée} ≈ 10 ns)

I - exemple: transition 1^{er} / 2^{ème} mode (pentane)

✓ transition \Leftrightarrow seuil de propagation V2

 \rightarrow paramètre caractéristique de la formation de filaments

I – rôle additifs ionisables (pyrène, $E_i \approx 7 \text{ eV}$)

(Jung et al. J Phys D 94)

I – Modes, nature du liquide et additifs

 \checkmark Très sensible à la nature du liquide & additifs

I – applications: propriétés fonctionnelles de liquides non-polaires pour l'isolation électrique

✓ Forte sensibilité à la nature du liquide & additifs

 \rightarrow Paramètres « streamers » utiles pour le dimensionnement

(Thèse Dang, Grenoble 2010)

I - autre exemple: eau

0 0.2μs

- 23kV

₩v

20kV/div Applied voltag

200mA/div Curren

200ns/div Tim

 $\varepsilon = 80$ $\sigma = 0,1 - 1000 \,\mu\text{S/cm}$

- ✓ "modes" comparables
- \checkmark Tensions d'apparition <<

- I Phénoménologie phénomènes prédisruptifs
 - caractères génériques: « modes » de propagation
 - cas de l'eau
 - Nature du liquide et additifs
- II Nature gazeuse des canaux, influence de la pression
 - Caractérisation expérimentale, corrélation pression-vitesse
 - Représentation schématique, hypothèses, questions ...
- III Propriétés électriques « macroscopiques » des canaux
 - Courant, paramètres
 - Cas de l'eau
- IV Génération des streamers
 - Hydrocarbure non-polaire: cyclohexane
 - eau

II - Nature gazeuse, processus élémentaire: génération d'une cavité par une avalanche électronique

II - nature gazeuse: dynamique cavité (diffusion laser \approx ns)

P_∞ [MPa]

<u>Modèle de Rayleigh</u> (incompressible, non visqueux, bulle vide) $\Delta t = 0.91468 R_{ray} * \sqrt{\frac{\rho_{\infty}}{P_{\infty}}}$

Bilan énergétique (volume de liquide vaporisé) Wi – énergie injectée

- ✓ Dynamique \rightarrow inertie du liquide
- ✓ forces électriques → effet négligeable
- ✓ cavité → essentiellement constituée de vapeur

II - nature gazeuse: canaux "2^{ème} mode"

(Gournay et al. J Phys D 94)

(pentane, 17 kV, 1.1MPa)

II - nature gazeuse: influence pression hydrostatique

(Gournay et al. J Phys D 94)

II – Canal : corrélation vitesse ⇔ pression interne

Va ≈ Vr 1^{er} mode 100 m/s

II – Canal : corrélation vitesse ⇔ pression interne

Va > Vr 2^{ème} mode

2 km/s

10 - 100 bars

II – Canal : corrélation vitesse ⇔ pression interne

Va >> Vr

3/4^{ème} mode

30 km/s

100 – 1000 bars ?

II - Autre exemple: eau

E + conductivité élevés

→ Dissipation d'énergie >>
→ diamètre canaux >>

Mécanismes d'ionisation ?

multiplication electronique ? ionisation de champ? dissociation renforcée (Onsager)? photoionization ? Influence nature du liquide ?

Vitesse propagation ?

Transitions entre modes ?

Phénomènes électro-mécaniques ?

P electrost. \approx 100 Bar

- I Phénoménologie phénomènes prédisruptifs
 - caractères génériques: « modes » de propagation
 - cas de l'eau
 - Nature du liquide et additifs
- II Nature gazeuse des canaux, influence de la pression
 - Caractérisation expérimentale, corrélation pression-vitesse
 - Représentation schématique, hypothèses, questions ...
- III Propriétés électriques « macroscopiques » des canaux
 - Courant, paramètres
 - Cas de l'eau
- IV Génération des streamers
 - Hydrocarbure non-polaire: cyclohexane
 - eau

III – Canal: propriétés électriques "macroscopiques" : chute de tension Ec

 \Rightarrow arrêt dû à la **chute de tension V**_c dans le canal

$$E_h < E_{critique} (\approx 10 MV/cm)$$

(Massala et al. IEEE EI 98)

III - Canal: propriétés électriques "macroscopiques" : chute de tension Ec

 \Rightarrow huile minérale (2^{ème} mode, 2km/s)

 \Rightarrow eau (3^{ème} mode, 30 km/s)

 $E \approx 5$ to 30 kV/cm

 $E \approx \Delta V / \Delta l_s = 12 \text{ kV/cm}$

III - Chute de tension Ec: paramètres sensibles

Liquides isolants:

i ~ V (**d**C/**d**x) v

III - Chute de tension: exemple huile minérale

✓ influence tension appliquée / vitesse
 (2 & 3^{ème} modes)

 ✓ influence "capacité linéique" dC/dx (streamer rampant)

III - Chute de tension: influence pression

III – Canal: émission de lumière et courants transitoires

Distance: 20 cm V: 256 kV Current (0.5 A/div.)	10 μs				
Emitted light					

- \Rightarrow conduction du canal généralement intermittente
 - → "réillluminations"
 - → comparable aux "leaders" dans les gaz électronégatifs
 - → étude spectroscopique: Nelly Bonifaci

 \rightarrow Résistivité très variable ...

- ✓ Forte influence conductivité sur courant & lumière
- ✓ Aucune influence sur la vitesse de propagation

(Thèse Dang, Grenoble 2010)

✓ courant, énergie dissipée, émission de lumière augmentent fortement au-delà de ≈ 10µS/cm

$$\begin{split} \epsilon &= 80 \\ \sigma &= 0, 1-1000 \; \mu \text{S/cm} \end{split}$$

Temps de relaxation électrique: $\tau = \epsilon \rho = 70 \mu s a 7 ns$

$$\begin{split} \epsilon &= 80 \\ \sigma &= 0, 1-1000 \ \mu \text{S/cm} \end{split}$$

Temps de relaxation électrique: $\tau = \epsilon \rho = 70 \mu s a 7 ns$

III - streamers dans l'eau: 1 - dégradation de polluants organiques (LCME – Poitiers)

Streamers « 3 & $4^{\text{ème}}$ modes » dans l'eau

→(très) mauvaise efficacité énergétique !

- décharge haute pression \Rightarrow recombinaison OH \Rightarrow H_2O_2 essentiellement
- pertes par effet Joule ...

III – streamers dans l'eau: dégradation 4 - chlorophenol

Chemical yield K(µmol/kJ)

		Streamer (eau)	Arc (eau)	Pulsed Corona (air)
4-CP	without FeCl ₂	0.2	10.1	21
	with FeCl ₂	5.0	15.3	36
4-NP	without FeCl ₂	0.03	1	32
	with FeCl ₂	2.7	6.8	51

 $Ln[C/C_o] \approx -k W_{rel}$

(Thèse Dang, Grenoble 2010)

III - streamers dans l'eau: 2 – fragmentation de matières végétales (TIMR – Compiègne)

Streamers ou arcs dans l'eau:

- \rightarrow ondes de chocs, cavitation
 - \rightarrow éclatement cellules végétales
 - \rightarrow extraction de sous- produits
 - (pépins de raisin \rightarrow polyphénols)

(45 kV, 600A, 3 à 10J)

Après traitement

Avant traitement

Arc pulsé

(Thèse Adda, Grenoble 2018)

III - streamers dans l'eau: 2 – fragmentation de matières végétales (TIMR – Compiègne)

→Très bonne efficacité énergétique (arc, effet mécanique)

• pas de pertes Joules autour de l'arc

- I Phénoménologie phénomènes prédisruptifs
 - caractères génériques: « modes » de propagation
 - cas de l'eau
 - Nature du liquide et additifs
- II Nature gazeuse des canaux, influence de la pression
 - Caractérisation expérimentale, corrélation pression-vitesse
 - Représentation schématique, hypothèses, questions ...
- III Propriétés électriques « macroscopiques » des canaux
 - Courant, paramètres
 - Cas de l'eau
- IV Génération des streamers
 - Hydrocarbure non-polaire: cyclohexane
 - eau

IV – Génération des streamers: cyclohexane

Négatifs (9 kV / 0.1 Mpa)

IV – Génération des streamers: cyclohexane

Positifs (14 kV)

0.1 MPa

Paramètres:

- Polarité
- Pression (100 bars)
- Temps de montée

4 MPa

Génération indépendante de la pression:

→ avalanche électronique en phase liquide (A. Denat, N. Bonifaci, F. Aitken)

O. Lesaint and L. Costeanu, IEEE Trans on DEI, 2018,

IV – Génération cyclohexane: polarité négative

Modélisable avec critère de streamer:

$$\ln N_{cr} = \int_0^x (\alpha -) dx = K_{str}$$

Naidis G.V., IEEE TDEI 2015

Données Haidara 91, Bonifaci 97

Il existe un courant « précurseur » → origine mal connue, impuretés ?

7 kV / 1 MPa

Scénario totalement différent !

- ✓ Courant et développement bulle <u>simultanés</u>
- Pas d'injection rapide d'énergie précédant la cavité
- ✓ la cavité disparait complètement à haute pression
- ✓ Seul phénomène indépendant de la pression: courant précurseur

Temps de retard à l'apparition

Polarité négative \rightarrow uniquement « retard statistique »

Polarité positive \rightarrow retard statistique + temps minimum formatif (45 ns)

Hypothèse 1: ébullition thermique

 $\rightarrow \Delta T$ insuffisant ...

• 54

(P. Atten « Electrohydrodynamic instability and motion induced by injected space charge in insulating liquids" IEEE TDEI 1996)

→ T montée court: U_i augmente peu avec la pression

- \rightarrow T montée long (0,1 10 µs):
 - \rightarrow influence de la pression \uparrow
 - → T retard long

Ébullition « thermique » dominante ?

- génération haute pression favorisée par fort dV/dt
- génération basse pression favorisée par t montée long

• 55

O. Lesaint and L. Costeanu, IEEE Trans on DEI, 2018,

IV – Génération hydrocarbures non polaires

→ Polarité négative: mécanisme indépendant de la pression

électron germe \rightarrow avalanche électronique(< 1 ns) \rightarrow onde de choc & cavité

- Pas de « temps formatif » (< 1 ns): électron fourni par émission de champ
- Temps de retard purement statistique

→ Polarité positive: mécanisme dépendant de la pression

mouvement EHD + échauffement \rightarrow cavitation ?

- EHD domine avec t_{montée} < 100 ns (dV/dt > 200 kV/μs)
- Ébullition thermique pourrait dominer aux temps longs

Des conditions extrêmement favorables pour la génération de cavités !

✓ σ = 0,1 – 1000 µS/cm → effet Joule considérable

(1000 μ S/cm, E = 1MV/cm) \rightarrow P = σ E² = 10⁹ W/cm³

✓ ε = 80 → mobilité EHD élevée (
$$\sqrt{\frac{ε}{ρ}}$$
 = 4,2 .10 − ⁷ m²/Vs)

E = 1MV/cm \rightarrow vitesse EHD = 42 m/s $\rightarrow \Delta P$ = 9 bar (Bernouilli) \rightarrow cavitation

✓ $\varepsilon = 80 \rightarrow \text{effets électromécaniques exacerbés (pression Electrostatique P_{es}=<math>\frac{\epsilon E^2}{2}$)

Exemple 1: Electrodes pointes, 20 kV \rightarrow E = 2 à 10 MV/cm

→ Hypothèse « basse »: pas de prise en compte de l'élévation de conductivité (T) .58

Exemple 1: Electrodes pointes, 20 kV \rightarrow E = 2 à 10 MV/cm

	W (Cal/cm ³) dissipée au bout d'un temps de 100ns			
σ (μS/cm)	(U = 20kV)			
	Pointe fine ($r_c = 2 \ \mu m$) 10 MV/cm	Extrémité droite	Pointe arrondie (r _c = 25 μm) 1,8 MV/cm	
0.17	0.90	0.15	0.06	
1.4	7.2	1.2	0.45	
12	61	10	3.8	
105	555	94	34	
503	2672	453	166	
1000	5309	900	329	
	+		+	
Vitesse EHD	420 m/s		76 m/s	
$\Delta P (EHD)$	900 bar		29 bar	

Exemple 2: Electrode sphère 1,2mm, E ≈ 20 à 200 kV/cm

• 60

(Thèse Adda, Grenoble 2018)

P. Adda, O. Lesaint et al. "Vapor Bubble and Streamer Initiation in Water under Long Duration Impulses", IEEE Transactions on Dielectrics and Electrical Insulation, 2018

Strioscopie, 32000 images /seconde

- Chauffage + mouvement EHD (8 m/s $\rightarrow \Delta P \approx 0.3$ bar)
 - Génération bulle vapeur

Etapes

- Ionisation bulle (décharge)
- Croissance « explosive »
- Implosion & rebonds

• 62

⁽Thèse Adda, Grenoble 2018)

Exemple 2: Electrode sphère 1,2mm, E ≈ 20 à 200 kV/cm

Exemple 2: Electrode sphère 1,2mm, E ≈ 20 à 200 kV/cm

• 65

P. Adda, O. Lesaint et al. "Modelling of current and temperature rise during discharge initiation in water", IEEE Transactions on DEI, 2018

Modélisation couplée thermique / électrique:

- → Conductivité $\sigma_{loc} = f(T_{loc})$
- → Augmentation de la température par effet Joule (puissance = $\sigma_{loc} E^2_{loc}$)
- → Echanges thermiques: conduction uniquement

Exemple 2: Electrode sphère 1,2mm, E ≈ 20 à 200 kV/cm

Température maximale simulée au moment t_b d'apparition de la bulle

Limites du calcul:

- Pas de prise compte EHD (convection) $\rightarrow \Delta P \approx 0.3$ bar
- Effets locaux importants (défauts de surface)

Exemple 2: Electrode sphère 1,2mm, **E ≈ 20 à 200 kV/cm**

6 kV, 100 μS/cm

Strioscopie (temps exposition: 1 µs)

 \rightarrow effets locaux importants

Conclusions ...

- ✓ mécanismes de décharge dans les liquides
- large variété de phénomènes
- changement de phase = étape indispensable
- difficulté: conditions extremes (P, T, E), physique ?
- pas de modèles

✓ applications (G2E lab)

- isolation électrique
- depollution
- Traitement de matières végétales

Remerciements ...

- ✓ collègues G2E lab (R. Tobazéon, A. Denat, N. Bonifaci...)
- ✓ partenaires (EDF, Schneider Electric, Alstom, AREVA, IREQ, ...)
- ✓ étudiants (P. Gournay, G. Massala, T.V. Top, P.E. Frayssines, T.D. Chau....)