

Théorie de l'ionisation directe dans le liquide

Formation d'une région de faible densité

Microbulles preexistantes

Théorie de Lewis – formation de cracks 1998

Théorie de l'électrostriction : formation de nanopores (cavité vide)

EHD Théorie O. Lesaint

.

Liquide

2 10²² cm⁻³

2 10¹⁹ cm⁻³

Rare Gas Liquid Detectors

Mobilité électronique – Liquides purifiés

Liquid	Т(К)	μ_{el} cm ² V ⁻¹ s ⁻¹	I liq - Eg (eV)	free electron lifetimes		W F Schmidt
Ar	85	475-625	14,3	>4 msec 0,1ppb of O2		Liquid State Electronics of Insulating Liquids 1997
Kr	117	1800	11,7			
Хе	165	2950-2000	9,22+-0,01			Electronic Excitations in Liquified Rare Gases 2005
Methane	111	400			Ouasi-free	
Tetramethylsilane	295	99		100-200μs CERN TMP		
Neopentane	295	65				
Ethane	296	47				
Isooctane	296	7				
Не	4.2	2 10-2	25,5		Electron bubble 17 Å	
Cyclohexane	296	0.4			Localized	
N pentane	296	0.16			Localized	
Water	293	18 10-4			Localized (solvated)	

Avalanche électronique en phase liquide

Experiences G2E.lab Cyclohexane « purifié »

DC -/+ Pointe 0,1-2µm

Helium - Argon liquide

Théorie de l'ionisation directe dans le liquide

Formation d'une région de faible densité

Application de la spectroscopie à l'étude des décharges électriques dans les milieux denses.

<u>N Bonifaci</u>

CNRS, G2Elab, F-38000Grenoble, France Nelly.Bonifaci@g2elab.grenoble-inp.fr

Joel Rosato, Sylvain Iséni, Jussi Eloranta, Olivier Lesaint, Zhiling Li, Vladimir Atrazhev, Yann Cressault, Nader Sadeghi.

OES $(T_e, T_k, T_{rot}, T_{vib}, T_{ex})$

• Molecular spectra

Theoretical background of optical emission spectroscopy for analysis of atmospheric pressure plasmas

T. Belmonte, C. Noël, T. Gries, J. Martin and G. Henrion, Plasma Sources Sci. Technol. 24, 064003 (2015).

Présentation RPF 2020 Yann Cressault Laboratoire LAPLACE, Toulouse

Présentation RPF 2020 Yann Cressault Laboratoire LAPLACE, Toulouse

• Atomic spectra

Molecular spectra

 T_e : electronic term, G(v): vibrational term, $F_v(J)$: terme rotationnel

$$G(\nu) = \omega_e \left(\nu + \frac{1}{2}\right) - \omega_e x_e \left(\nu + \frac{1}{2}\right)^2 + \omega_e y_e \left(\nu + \frac{1}{2}\right)^3 + \cdots$$

$$F_V \left(J\right) = B_V J \left(J + 1\right) - D_V J^2 \left(J + 1\right)^2 + \dots$$

J rotational quantum number

If the rotational states are in equilibrium they are distributed according to a Boltzmann law:

$$N_u = \frac{N_0 g_u}{Q(T_r)} e^{-E_u/k} T_r$$

Ι_r, Ι_ν.....

B. Pearse and A. G. Gaydon

The identification of Molecular Spectra Chapman and Hall 1976

G. Herzberg, Molecular Spectra and Molecular Structure:

Spectra of Diatomic Molecules, 2nd edn.

(Van Nostrand, Princeton, NJ, 1950)

I. Kovacs, Rotational structure in the spectra of diatomic molecules (Adam Higer Ltd., London, 1969)

Home made code

Présentation RPF 2020 Yann Cressault Laboratoire LAPLACE, Toulouse

Simulation de spectres radiatifs : une aide précieuse pour le diagnostic des plasmas

- 5. Conclusion : et les logiciels?
- Multitude de logiciels
- Systèmes moléculaires disponibles ?
- Quels paramètres/constantes spectro ?
- Quel couplage ?
- Quelle fonction d'appareil ?
- Quelles hypothèses ???

LIFBASE

Molécule	Transition	Système	v _{max}
OH	A-X	Violet	8
OD	A–X		3
NO	A-X	γ	5
	B-X	β	7
	C-X	δ	1
	D-X	ϵ	5
CH	A–X		3
	B-X		1
	C–X		2
CN	B-X	Violet	8
CF	A–X		3
	B-X		5
SiH	A–X		2
N_2^+	B-X	Premier Négatif	6

SPECAIR

TABLEAU 1.2 Molécules et systèmes traités dans le logiciel SPECAIR		
Molécule	Système	Version demo
OH	Violet	✓
	Meinel	×
C ₂	Swan	×
CN	Violet	✓
	Rouge	×
CO	Infrarouge, Quatrième Positif	~
N_2	Premier Positif, Second Positif	×
N_2^+	Meinel	×
-	Premier Négatif	~
NH	A-X	×
NO	Infrarouge, γ , β	✓
	$\delta, \epsilon, \beta', \gamma'$	×
O ₂	Schumann-Runge	×
Raies atomiques	C, N, O	✓

SPARTRAN

Molécule	Système
CO ₂	Infrarouge
H_2	Lyman, Werner
C2	Swan, Philips, Mulliken,
	Deslandres-D'Azambuja, Fox-Herzberg
	Ballik-Ramsay
CN	Violet, Rouge
CO	Infrarouge, Quatrième Positif,
	Angstrom, Troisième Positif,
	Triplet, Asundi
CO^+	B-A, B-X, Comet Tail
N ₂	Premier Positif, Second Positif
N_2^+	Premier Négatif
NÕ	$\gamma, \beta, \delta, \epsilon, \beta', \gamma'$
O2	Schumann-Runge,
-	Schumann-Runge Continuum
Raies atomiques	H, C, C ⁺ , N, N ⁺ , O, O ⁺ ,
	Ar, Ar ⁺ , Hg, Xe, Xe ⁺
Photo-ionisation	H, C, C ⁺ , N, N ⁺ , O, O ⁺ , Ar, Ar ⁺
	CO ₂ , C ₂ , N ₂ , O ₂ , CO, CN, NO
Photo-détachement	t C ⁻ , N ⁻ , O ⁻
Bremsstrahlung	N, O, N ₂ , O ₂

MASSIVE OES

Molécule	Transition	Système	Base de données	Réfs.
N_2^+	В-Х	Premier Négatif	LIFBASE	[LC99a]
OH	А-Х	Violet	LIFBASE	[LC99a]
N_2	C-B	Second Positif	\rightarrow	[LK92], [FS98], [Nas+04]
NH	А–Х		PGOPHER	[Len73], [SPS94], [RB10], [Wes17]
NO	В-Х	β	LIFBASE	[LC99a]

Présentation RPF 2020 Yann Cressault Laboratoire LAPLACE, Toulouse

Simulation de spectres radiatifs : une aide précieuse pour le diagnostic des plasmas

5. Conclusion : et les logiciels?

Système γ du radical NO Cas d'un plasma thermique

Quand ca marche pas !!!

- Décalage en longueur d'onde de 0.235 nm ;
- Pas de dédoublement Λ dans l'état ²Π.
- Cas de couplage de Hund considéré pour le niveau fondamental ;
- Facteurs de Hönl-London différents.

Ar-N₂, 1atm (A-M Kassir, PhD Thesis, 2020)

Présentation RPF 2020 Yann Cressault Laboratoire LAPLACE, Toulouse

	LIFBASE	SPECAIR	SPARTAN	Concordance	
NO γ (A—X)	included	included	Included		4
NO β (B—X)	included	included	Included		Ø
NO δ (C—X)	included	included	Included		ð
NO ε (D—X)	included	included	Included		4
ΝΟ β' (Β'—Χ)	-	included	Included		Ô
ΝΟ γ' (Ε—Χ)	-	included	Included		4
NO 11000 Å (D—A)	-	included	-	-	
NO Infrarouge (X—X)	-	included	-	-	
N_2^+ Meinel (A—X)	-	included	-	-	
N ₂ ⁺ Premier Négatif (B—X)	included	included	Included		4
N ₂ Premier Positif (B—A)	-	included	Included		Ø,
N ₂ Second Positif (C—B)	-	included	Included		Ó
O ₂ Schumann-Runge (B—X)	-	included	Included		Ó

Ar-N₂, 1atm (A-M Kassir, PhD Thesis, 2020)

Laplace Etude des molécules diatomiques C-H-O-N

- Comparaisons des logiciels
- Etudes expérimentales

• 14

The rotational temperature of a molecule is often use as a probe of the gas temperature

Second positive band system N_2 (C-B) Ultraviolet band system OH (A-X) First negative band system N_2^+ (B-X)

".... observing a rotational Boltzmann distribution is a necessary but not sufficient condition for assuming that the rotational distributions are in equilibrium with the gas kinetic temperature.an overpopulation of high rotational states occurs, which in the absence of thermalization of the rotational states would typically lead to a larger rotational temperature parameter in comparison with the gas temperature."

Tr_{N2} ≠Tr_{OH}

P J Bruggeman Nader Sadeghi et al Plasma Sources Sci Technol 23 (2014) 023001

Two « Temperatures » Model – 3 T Boltzmann Plot

Collisional time Radiative life time Quenching

Spectral Line Profile $P_e(\lambda)$

$$\varepsilon_{\lambda} = \frac{hc}{4\pi\lambda_{ul}} A_{ul} P_e(\lambda) N_u$$

$$hv_{ul} = \frac{h\omega_{ul}}{2\pi} = \frac{hc}{\lambda_{ul}} = E_u - E_l$$

- A_{ul} : Einstein transition probability of spontaneous emission [s⁻¹],
- *h* : Planck constant,
- λ the wavelength of the emitted photon [m⁻¹].
- N_u : number density of emitting species [m⁻³] in the *u* state.

R. Stringanow and N. S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms Plenum New York 1968.

NIST ASD Output: Lines http://physics.nist.gov/cgi-bin/ASD/lines1.pl

Atomic Spectral Line Database <u>http://cfa-www.havard.edu/</u> (OL 777nm) (Cu I)

Spectral Line Profile $P_e(\lambda)$

Line width $\Delta \lambda_{FWHM}$ Line shift $d = \lambda_{max} - \lambda_{vacuum}$

FWHM : Full Width at Half Maximum

Asymmetry Satellite band Forbidden line Self-absorption

Broadening mechanisms

Natural Broadening

Δλnatural~10⁻⁴ Å

Doppler Broadening

$$\Delta \lambda_D = 2\lambda \sqrt{\frac{2kTLn2}{Mc^2}} = 7.157 \times 10^{-7} \lambda \sqrt{\frac{T}{M}}$$
Gaussian Profile
Particle Temperature

	т	$\Delta\lambda_{D}$
He	10000	0,02 nm
Ar	10000	0,0057 nm
H_{β}	5000	0,025 nm

Instrumental Broadening	 Gaussian profile	
Pressure Broadening	 Lorentzian profile	(Complex line)

Pressure Broadening

The radiation emitted from an atom is changed by the force field of a neighboring atom. Frequency and amplitude are therefore no longer constant in time.... The change is so great, however, that the phase of the vibration after the collision is no longer the same as it would have been had there been no collision.

-Weisskopf, 1933

Stark (p=2,4) Neutral (van der Waals) (p=6) Resonant (p=3)

Semi-empirical potential

 $m^p s^{-1}$

ab-initio potential

Laboratoire de Chimie et Physique Quantiques Systèmes ayant un faible nombre d'électrons

Semi-empirical Potential

Linear Stark	$V(r) = \pm \frac{\hbar C_2^{\omega}}{r^2}$	Literature
Quadratic Stark	$V(r) = \pm \frac{\hbar C_4^{\omega}}{r^4}$	Literature
Resonant	$V(r) = \pm \frac{\hbar C_3^{\omega}}{r^3}$	$C_3^{\omega} = \frac{e^2 f_r \lambda_r}{16\pi^2 \varepsilon_0 m_e c}$
van der Waals	$V(r) = -\frac{\hbar C_6^{\omega}}{r^6}$	$C_{6}^{\omega} = \frac{1}{2h\varepsilon_{0}} e^{2}\alpha \left \left\langle r^{2} \right\rangle \right m^{6}s^{-1}$ $C_{6}^{\omega} = e^{2}\alpha \left \left\langle r^{2} \right\rangle \right \text{ergcm}^{6}$ $\alpha \text{ atomic polarizability m}^{3}$
		$\langle r^2 \rangle = a_0^2 \frac{n^2}{2z_i^2} \langle 5n^{*2} + 1 - l(l+1) \rangle$ $n^* = \sqrt{z_i \frac{E_H}{E_i - E_u}}$
L-]	$V(r) = \hbar \left(\frac{C_{12}}{r^{12}} - \frac{C_6^{\omega}}{r^6}\right)$	 W. Behmenburg J. Quant. Spectrosc. Radiat. Transfer 4, (1964) 177 W. R. Hindmarsh, A. D. Petford, G. Smith, Proc Roy Soc <u>A 297</u> (1967) 296 W. R. Hindmarsh, A. N. Du Plessis et J. M. Farr (1970) J. Phys. B: At. Mol. Opt. Phys. 3, L5-L8 Butaux, F Schuller, R Lennuier J de Phys, 33, (1972), 635. ab initio potential 19

ab initio potential

H G Kuhn : Does your treatment predict satellite line? A Jablonski: The theory does not predict this mysterious effect. 1968

MOLPRO 2009 package

http://www.molpro.net

Laboratoire de Physique et Chimie Quantique Toulouse

Interaction Physical classification

Stark (Literature) Van der Waals ($-C_6/r^6$) Resonant ($+-C_3/r^3$)

Potentiel ab initio

MOLPRO 2009 package http://www.molpro.net

Spectral line Profile

Classical theory

?

?

Quantum treatment

Stark

Spectral Line Profile Quantum treatment

$$I(\omega) = \frac{1}{\pi} \operatorname{Re} \int_0^\infty dt \left\langle \vec{d}(0) \cdot \vec{d}(t) \right\rangle e^{i\omega t}$$

d is the dipole moment

U(t) evolution operator relative to the electrons

$$\vec{d}(t) = U^+(t)\vec{d}(0)U(t)$$
 U-matrix

$$i\hbar \frac{dU}{dt}(t) = (H_0(t) + V(t))U(t)$$

time-dependent Schrödinger equation for the evolution operator U(t) H₀ is the Hamiltonian of the unperturbed emitter

 \rightarrow Code

PIIM Marseille Weizmann Institute of Science, Israel; Vallaloid Spain

22

Classical theory

Line shape formalism based on the Fourier transform of the autocorrelation function $P(\omega) = \frac{1}{\pi} \operatorname{Re} \int_{0}^{+\infty} \phi(\tau) \exp[i\omega\tau] d\tau \quad \phi(\tau) = \int_{-\infty}^{+\infty} e^{i(\eta(t) - \eta(t-\tau))} dt$

$$\phi(\tau) = \left\langle e^{-i\eta} \right\rangle_t = e^{-N_{pert}V_p(\tau)}$$

Autocorrelation function (wave train)

The autocorrelation function measures the average evolution of the wave train over a time interval τ from an initial time t

P. W. Anderson, Phys Rev <u>76</u> (1949) 647.P. W. Anderson, Phys Rev 86 (1952) 809.

Classical theory

$$\phi(\tau) = \left\langle e^{-i\eta} \right\rangle_t = e^{-N_{pert}V_p(\tau)}$$

Perturber density N_{pert}

V_p: collision volume

$$W_{p}(\tau) = 2\pi \left[\int_{0}^{+\infty} bdb \int_{-\infty}^{+\infty} dx \left\{1 - \exp(-i\frac{1}{\hbar}\int_{0}^{t} V(R(t'))dt')\right\}\right] \qquad \text{F}$$
$$R(t) = \left[b^{2} + (x_{0} + \overline{v}t)^{2}\right]^{1/2} \qquad \text{b is the impart}$$

Rectilinear classical path

Unified theory Impact approximation N_{pert} <<< Quasitatic approximation N_{pert} >>>

The quasistatic and impact approximations represent important theoretical limits that are in many cases sufficient for practical purposes and have been used to guide and develop new methods that are more generally applicable and, in fact, satisfactorily solve the line broadening problem in practically all cases. S. Alexiou / (2009)

Experimental profile			
90 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	Lorenztian profile (Voigt profile)	Impact approximation	N<<, core
	Red Asymmetric profile	Quasi static approximation	N>>, wing
10 (T=200K 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Complex Satellite Blue wing	Unified theory (ab initio potential)	Ν, ω

Impact approximation

Stark	literature
Resonant	$\Delta \lambda_{res} = K \frac{1}{\pi} \sqrt{\frac{g_0}{g_r}} \frac{e^2 \lambda_{ul}^2 f_r \lambda_r}{4\pi \varepsilon_0 m_e c^2} N \propto \frac{P}{T}$ K: 0,9-1,8 $S_{\lambda res} \approx 0$
van der Waals	$\Delta \lambda_{vdw} = A \left(\frac{\lambda_{ul}^2}{2\pi c} \right) \Delta C_6^{2/5} \mathbf{v}^{-3/5} N \propto \frac{P}{T^{0.7}}$
	A: 8.08 ou 8.16 $S_{\lambda_{vdw}} = \frac{\Delta \lambda_{VDW}}{2,75} \bar{v} = \sqrt{\frac{8kT}{\pi\mu}}$

Quasistatic Approximation

Classical theory

 d_{ee} , Dipole transition moment (ab initio calculation)

Allard N F, Royer A, Kielkopf J F and Feautrier N 1999 Phys. Rev. A 60 1021

• 28

Stark broadening

Linear Stark effect Hydrogen lines

H_{α} 656.2 nm, H_{β} 486.1 nm

H.R. Griem, Plasma Spectroscopy, Academic Press, New York, 1964.1964 H Griem Spectral line broadening by Plasmas London Academic 1974 H. Griem, Principles of Plasma Spectroscopy, Cambridge University Press, 1997.	N _e =C(N _e ,T)* $\Delta\lambda^{3/2}$ Where C(N _e ,T) is in A ^{-3/2} cm ⁻³ .
M. Gigosos et V. Gardeñoso, J. Phys. B: At. Mol. Opt. Phys., vol. 29, no 20, p. 4795, oct. 1996.	$H_{\alpha} = \begin{cases} Table \\ full width at half area \end{cases}$
M. Gigosos , M Gonzalez V. Gardeñoso Spectrochimica Acta Part B 58 (2003) 1489–1504	$H_{\beta} \Delta \lambda_{stark} (nm) = 4.8 \left(\frac{N_e}{10^{23}}\right)^{0.68116}$

Example : Helium Gas Linear Stark effect + van der Waals

$$\Delta \lambda_{lor} = \Delta \lambda_{stark} (N_e, T_e) + \Delta \lambda_{vdw} (N)$$

Η-β	C ₆ [m ⁶ s⁻¹]	Δλ _{vdw}
4s-2p	7.59*10 ⁻⁴³	2.20×10 ⁻⁵ PT ^{-7/10}
4p-2s	6.85*10 ⁻⁴³	2.12×10 ⁻⁵ PT ^{-7/10}
4d-2p	5.82*10 ⁻⁴³	1.98×10 ⁻⁵ PT ^{-7/10}

H-a	C ₆ [m ⁶ s⁻¹]	Δλ _{vdw}
3s-2p	2.75*10 ⁻⁴³	2.40×10 ⁻⁵ PT ^{-7/10}
3p-2s	1.696*10 ⁻⁴³	2.20×10 ⁻⁵ PT ^{-7/10}
3d-2p	1.18*10 ⁻⁴³	1.93×10 ⁻⁵ PT ^{-7/10}

 H_{β} quadratic Stark, H_{α} self – absorption

Quadratic Stark Effect

Impact Approximation

electrons

$$J(x) = \frac{1}{\pi} \int_{0}^{\infty} \frac{W(\beta)d\beta}{1 + (x - A^{4/3}\beta^2)^2}$$

ions

Quasistatic Approximation

Holtsmark distribution

$$W(\beta) = (2/\pi) \beta \int_0^\infty \chi \sin(\beta \chi) \exp(-\chi^{3/2}) d\chi$$

$$\Delta \lambda_{stark} = (1+1.75\alpha(1-0.75r))2\omega$$

 $S_{\lambda(Stark)} = d \pm 2A(1-0,75r)\omega$

N_e, **T**_e p. 97 Griem 1974

H. R. Griem (1964) Plasmas Spectroscopy, McGraw-Hill Book Compagny, New York.
 H. R. Griem (1974) Spectral Line Broadening by Plasmas, New York : Academic Press.
 H. R. Griem (1997) Principles of Plasma Spectroscopy, Cambridge.

Stark : Line shape Code Quantum treatment, Numerical calculation

GZELab Grenoble Génie Electrique Grenoble Electrical Engineering

Simulation code	LSNS	PIIM Rosato, J. et al J. Quant. Spectrosc. Radiat. Transfer 2015 , 165, 102–107	computer simulation method The particle motion is simulated and the Schrödinger Eq. is solved numerically it is time consuming	
	SimU	Stambulchik, E. et al Phys. Rev. E 2007 , 75, 016401		
Models	PPP	PIIM Calisti, A et al Phys. Rev. A 1990 , 42, 5433–5440.	Frequency Fluctuation Model Rapid calculations for neutral and charged emitters	
	QC-FFM	Stambulchik, E.et al Phys. Rev. E 2013 , 87, 053108.	Frequency Fluctuation Model	
	Zest	Gilleron, F et al Atoms 2018 , 6, 11	Quasi-static description of ions and impact approximation for electrons	

Interaction Physical classification

Stark (*literature*) Van der Waals ($-C_6/r^6$) Resonant ($+-C_3/r^3$) Potentiel ab initio Code MOLPRO http://www.molpro.net

Spectral line Profile

Classical theory

- Unified theory
- Impact approximation
- Quasitatic approximation

Quantum treatment

Stark

PIIM Marseille Weizmann Institute of Science, Israel; Vallaloid Spain • 34

Positive streamers in liquid nitrogen

Streamers in chlorinated alkane and alkene liquids

Approximation quasi static vdw

Corona discharge in Helium 300 K

Unified theoryAb initio potentialQuantum treatmentStark

Cold helium jet

Corona discharge in Helium 4 K

?

0,4/1400µs 100-200 mA *80mm, 102kV*

The streamer propagation

Weak emitted light

~100 streamers

Streak photograph of filamentary streamer propagating up to plane

Streamer reaches the plane Re-illumination

Intense emitted light

1 streamer

Experimental Results

Re-illumination

Light emitted by one positive streamer in LN_2 when it stops on the insulating plane

Intense NI Atomic line

 $(3s^4P-3p^4S^0 \text{ and } 3s^4P-3p^4P \text{ transition})$

No N₂ emission

When one positive streamer stops on the insulating plane, a large current pulse and a bright emitted light are recorded at t_b

Re-illumination

Internal Pressure of the gas ~200 B V=30 km/s Internal Pressure of the gas ~30 B V=10 km/s

 $N_e = 0,5-1,5 \ 10^{24} \ m^{-3}$

Streamers in chlorinated alkane and alkene liquids

725,6 nm

20-30 km/s

• 41

Optical Emission from Helium Cryoplasma

Discharge in dense fluids (liquids or high-pressure gases :1-100 bar)

Code comparison code workshops http://plasma-gate.weizmann.ac.il/slsp/

The 4th Spectral Line Shapes in Plasmas code comparison workshop– Baden – March 20th to 24th, 2017

Corona discharge in helium 300 K

• 43

Comparison of the FWHM of the H- β Line

300 K

H-β Line in a Corona Helium Plasma: A Multi-Code Line Shape Comparison

Table 3. The electron densities (in units of 10^{15} cm⁻³) as inferred from the fit of the experimental H- β spectra by the contributing codes. P is the pressure in units of bars.

Case n ^o	Р	LSNS	PPP (n°1)	PPP (n°2)	PPP_GC	QC_FFM	ZEST
1	1	< 0.5	0.15	0.26	0.18	0.8	1.2>
2	1.5	1.1	0.3	0.58	0.38	2.2	2.7
3	2	-	0.55	1.0	1.3	4.7	-
4	3	-	0.9	2.0	-	10.0	-
5	4	-	1.3	2.8	-	15.0	-
6	5	-	1.9	3.8	-	27.0	-

RR Sheeba, M Koubiti, N Bonifaci, F Gilleron, C Mossé... - *Atoms* **2018**, *6*(2), 29; <u>https://doi.org/10.3390/atoms6020029</u>

Broadening of the Neutral Helium 492 nm Line in a Corona Discharge: Code Comparisons

A New Procedure to Determine the Plasma Parameters from a Genetic Algorithm Coupled with the Spectral Line-Shape Code PPP

Table 5. Results of the fitting GA analysis of the H- β line. n_e: electron density; T_e: electron temperature; $\Delta \lambda_{VDW}$: van der Waals width; $\Delta \lambda_{ins}$: Gaussian width.

	Pressure (bar)	n _e (cm ⁻³)	T _e (10 ⁴ K)	$\Delta\lambda_{ m VDW}$ (nm)	$\Delta \lambda_{ins}$ (nm)
Цß	1	10 ¹⁴	1.23	$7.2 imes 10^{-2}$	$8.0 imes10^{-2}$
пр	2	8×10^{14}	1.17	15.2×10^{-2}	$8.0 imes10^{-2}$
	3	$1.85 imes10^{15}$	1.21	24.2×10^{-2}	$8.0 imes10^{-2}$
≠	Table	e 6. Results of the	fitting GA analys	is of the He I 492 nm	line.
	Pressure (bar)	n _e (cm ⁻³)	T _e (10 ⁴ K)	$\Delta\lambda_{ m VDW}$ (nm)	$\Delta \lambda_{ins}$ (nm)
_	1	10 ¹⁵	1.21	$2.93 imes10^{-2}$	$8.0 imes10^{-2}$
192 nm	2	3.96×10^{15}	1.16	5.82×10^{-2}	$8.0 imes10^{-2}$
_	3	$8 imes 10^{15}$	1.16	9.7×10^{-3}	$8.0 imes 10^{-2}$

Electron number density : N_e

Computer simulation method

P=1 Bar

Line Shape Modeling for the Diagnostic of the Electron Density in a Corona Discharge

J Rosato, N Bonifaci, Z Li, R Stamm - Atoms, 2017

• 48

300 K (P) 706 nm (³S-³P)

Fourier Transform of the dipole autocorrelation function

$$\phi(\tau) = \mathrm{e}^{\left(-N_{He}g_{\alpha}(s)\right)}$$

$$g_{\alpha}(s) = \frac{1}{\sum_{e,e'} {}^{(\alpha)} |d_{ee'}|^2} \sum_{e,e'} {}^{(\alpha)} \int_{0}^{+\infty} 2\pi \rho d\rho \int_{-\infty}^{+\infty} dx \, \tilde{d}_{ee'}[R(0)] \\ \left[e^{\frac{i}{\hbar} \int_{0}^{s} dt V_{e'e}[R(t)]} \, \tilde{d}^{*}_{ee'}[R(s)] - \tilde{d}_{ee'}[R(0)]\right]$$

He*-He Potential

Comparison between experiment and theory

300 K (P)706 nmComparison between experiment and theory

Discrepancy observed at high pressures

Cold helium jet excited by electrical discharges

$$[N_J] \propto (2J+1) \left[\exp\left(-\frac{E_J}{kT_r^L}\right) + R\left(\frac{T_r^L}{T_r^H}\right) \exp\left(-\frac{E_J}{kT_r^H}\right) \right]$$

• 52

Cold helium jet excited by electrical discharges

Cold helium jet excited by electrical discharges

gas	probe	top	middle	bottom
pure He	O atom			12.5
$[N_2]/[He] = 1/10000$	O atom	70	36	23
	N ₂ (1 ⁺ , 2-0) PGOPHER	42±10.5	30±7.5	18±4.5
	N ₂ (1 ⁺ , 2-0) 2-T*	20-100	18-70	8-70
$[N_2]/[He] = 1/400$	N ₂ (1 ⁺ , 2-0) 2-T			4-20
	N ₂ (1 ⁺ , 2-0) PGOPHER			13.2±2
	N ₂ (1 ⁺ , 3-1) 2-T			4-25
	N ₂ (1 ⁺ , 3-1) PGOPHER			14±2.1
[N ₂]/[He] = 1/200	N ₂ (IRA, 8-3) PGOPHER		33±6.6	10.5 ± 2.1
	$N_2(1^+, 2-0)$ PGOPHER	67±6.7	39±3.9	13.6±1.4
	N ₂ (1 ⁺ , 2-0) 2-T	30-120	14-60	5-20

R E Boltnev et al Plasma Sources Sci. Technol.2021

Conclusion

Interaction Physical classification

Stark (*literature*) Van der Waals ($-C_6/r^6$) Resonant ($+-C_3/r^3$) Potentiel ab initio Code MOLPRO http://www.molpro.net

Spectral line Profile

Classical theory

Unified theory Impact approximation Quasitatic approximation

Quantum treatment

PIIM Marseille Weizmann Institute of Science, Israel; Vallaloid Spain

Spectral Line Shapes in Plasmas code comparison workshop

Thank you for your attention

Interpretation ? 4.2 K

Temperature : Rotational temperature measurements

He* He₂* Rydberg electron

Interpretation:

Microscopic void around the He*3s and He₂*3d

Repulsion between Rydberg e⁻ and surrounding atoms in the ground state forms bubble

New autocorrelation function with « bath » interaction

 $\Phi(\tau) = \exp\left(-\int \left(1 - e^{-i\Delta V_{fi}(r)t/\hbar}\right) \rho_{i}(r)d^{3}r\right)$

Liquid density in the electronic ground state around 3s calculated using Bosonic Density Functional Theory DFT

Molpro code

Liquid density around He*(3s³S)

Liquid density around 3s³S calculated using DFT

Empty cavity around excited atom (emitter)

706.5 nm He* line (³S-³P)

Electron number density : N_e

Historical development

Impact approximation Phase shift

Weisskopf (1932), Lindholm (1941), Foley (1946)

$$\omega(t) = \omega_0 + \frac{d\eta}{dt}$$

Quasistatic approximation

Holtsmark (1919), Kuhn and Margenau (1937),

$$\omega = \omega_0 + \frac{\Delta V(r)}{h}$$

Line shape formalism based on the Fourier transform of the autocorrelation function

$$P(\omega) = \frac{1}{\pi} \operatorname{Re} \int_{0}^{+\infty} \phi(\tau) \exp[i\omega\tau] d\tau \quad \phi(\tau) = \int_{-\infty}^{+\infty} e^{i(\eta(t) - \eta(t-\tau))} dt$$

Autocorrelation function (wave train)

The width of the Voigt profile $\Delta \lambda_{\nu}$ is approximated by equation where $\Delta \lambda_{\sigma}$ and $\Delta \lambda_{\iota}$ are the Gaussian and Lorentzian FWHMs, respectively

$$\Delta\lambda_V \approx \frac{\Delta\lambda_L}{2} + \sqrt{\frac{\Delta\lambda_L^2}{4} + \Delta\lambda_G^2}$$

4.2 K

Neutral Perturbers Density : N_{He}

Unified semiclassical theory

Allard, N. F. 2012, J. Phys. Conf. Ser., 397, 012065